Ir arriba
Información del artículo

A novel neuro-probabilistic framework for energy demand forecasting in Electric Vehicle integration

M.A. Rojo-Yepes, C.D. Zuluaga-Ríos, S.D. Saldarriaga-Zuluaga, J.M. López-Lezama, N. Muñoz-Galeano

World Electric Vehicle Journal Vol. 15, nº. 11, pp. 493-1 - 493-18

Resumen:

This paper presents a novel grid-to-vehicle modeling framework that leverages probabilistic methods and neural networks to accurately forecast electric vehicle (EV) charging demand and overall energy consumption. The proposed methodology, tailored to the specific context of Medellin, Colombia, provides valuable insights for optimizing charging infrastructure and grid operations. Based on collected local data, mathematical models are developed and coded to accurately reflect the characteristics of EV charging. Through a rigorous analysis of criteria, indices, and mathematical relationships, the most suitable model for the city is selected. By combining probabilistic modeling with neural networks, this study offers a comprehensive approach to predicting future energy demand as EV penetration increases. The EV charging model effectively captures the charging behavior of various EV types, while the neural network accurately forecasts energy demand. The findings can inform decision-making regarding charging infrastructure planning, investment strategies, and policy development to support the sustainable integration of electric vehicles into the power grid.


Resumen divulgativo:

Este paper presenta un modelo de  grid-to-vehicle que utiliza métodos probabilísticos y redes neuronales para predecir la demanda de carga de vehículos eléctricos en Medellín, Colombia. Adaptado a datos locales, el modelo optimiza la infraestructura de carga y las operaciones de la red. Los resultados apoyan la planificación, inversión y políticas para una integración sostenible de vehículos eléctricos.


Palabras Clave: electric vehicle charging; forecasting; neural networks; probabilistic approach


Índice de impacto JCR y cuartil WoS: 2,600 - Q2 (2023)

Referencia DOI: DOI icon https://doi.org/10.3390/wevj15110493

Publicado en papel: Noviembre 2024.

Publicado on-line: Octubre 2024.



Cita:
M.A. Rojo-Yepes, C.D. Zuluaga-Ríos, S.D. Saldarriaga-Zuluaga, J.M. López-Lezama, N. Muñoz-Galeano, A novel neuro-probabilistic framework for energy demand forecasting in Electric Vehicle integration. World Electric Vehicle Journal. Vol. 15, nº. 11, pp. 493-1 - 493-18, Noviembre 2024. [Online: Octubre 2024]


    Líneas de investigación:
  • Movilidad sostenible y vehículos eléctricos
  • Industria conectada: aplicación de técnicas de deep learning a procesos industriales